Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— (96 — 
sed numerus laterum in tertio duobus lateribus 
minor erit, quam in primo. Repetendo ergo 
hane constructionem quoties necesse fuerit, quod 
libet polygonum converti poterit in triangulum 
ipsi aequale. 
233. §. Problema, 
Determinare aream polygoni dati ABCDEF 
Solutio. I. Dividatur polygonum per diago 
nales AC, CE etc, in triangula ABC, ACF etc, 
quorum areae invenientur ducendo bases in di 
midias altitudines. (Fig. 122.) 
AC.I 
CF. AL, etc. 
ABCACF 
Summa horum productorum dabit aream 
ri polygoni. 
integ 
Solutio. II. Ducatur ad libitum linea recta 
AR, et in eam ex omnibus angulis polygoni de 
ducantur perpendicula FG, EK, DM etc. Hoc 
modo area polygoni erit divisa in triangula et 
trapezia. Nam EK et DM sunt perpendicula 
res in AR, proinde parallelae. Erit ergo EKMD 
trapezium, cujus altitudo est KM, proinde il 
EK + DM 
1).KM. Si ab hac aufe 
lius area — 
DM. MN, remanebit 
ratur triangulum DMN — 
2 
area EKND, quae est pars polygoni. Porro erit 
trapezium FOKE (FOF Ek 
—).GK alia pars 
polygoni, etc. Inventis hoc modo singulis par 
tibus,
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer