Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— (87) 
213. §. Theorema. 
Parallelogramma ABCD, EBCF super eadem 
basi BC, et inter parallelas AF, BC constituta, 
sunt aequalia inter se. 
Dem. I. Si punctum E cadat inter A et D. 
(Fig. 105.) 
Quoniam AD — BC, et EF— BC, erit quo 
que AD — EF. Demta communi parte ED, re 
manebit AE — DF. Et cum porro sit AB— DC, 
BE — CF, triangula ABE, CDF erunt aequalia, 
Proinde si utrique addatur trapezium BERC, 
summae aequales prodibunt, seu ABCD—EBCE, 
II. Si punctum E cadat in D. (Fig. 106.) In 
hoc casu erit iterum AD—BC, DE—BC, proinde 
AD — DF; porro etiam AB—CD, BD—CF, ergo 
triangula ABD, CDF erunt aequalia. Si utrique 
addatur triangulum BCD, etiam summae prodi 
bunt aequales, proinde ABCD —DBCF, 
III. Si punctum E cadat extra AD, et late 
ra BE, CD sese secent in G.(Fig. 107.) Etiam in 
hoc casu erit AD— EF, et addita utrimque recta 
DE, erit quoque AE—DF; et cum simul sit AB 
CD, BE — CF, erunt triangula ABE, CDF ae 
qualia. Si ab utroque auferatur commune trian 
gulum DEG, residua ABGD, EGCF manebunt 
aequalia; et si utrique residuo addatur triangu 
lum BCG, summae prodibunt aequales. Erge 
ABCD — EBCF.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer