Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— ( 78) — 
etus A ducta, aequalis est angulo in segmento 
opposito. (Fig. 92.) 
Dem. Angulus in semicireulo ABD — R, 
proinde in triangulo rectangulo ABD erunt an 
guli ADB DAB = R. Quoniam autem dia 
meter AD perpendicularis est ad tangentem FG, 
erunt quoque anguli DAB + BAG = R. Inde 
sequitur esse ADB + DAB — DAB + BAG. Ab 
jecto utrimque angulo DAB, manebit angulus 
ADB— BAG. 
Porro cum sint anguli ADB + AEB — 2R; 
et etiam anguli BAG + BAF — 2R; erunt quo 
que anguli ADB + AEB — BAG + BAF. Abje 
ctis angulis aequalibus ADB et BAG, remane 
bit angulus AEB = BAF. Cum ergo sit angu 
lus BAG — ADB, et angulus BAF = AEB, chor 
da cum tangente continebit angulum aequalem 
angulo in segmente opposito. 
202. §. Problema. 
Super data linea recta AB describere se 
mentum circuli quod datum angulum F capere 
potest. (Fig. 93, et 94.) 
Solutio. Ad rectam AB, in extremitate B 
formetur angulus ABD — F, et ad BD eriga 
tur perpendiculum BC, quod in puncto C oc 
currit perpendiculo EC in medio rectae AB 
erecto. Centro C radio AC describatur circu 
lus, et hujus segmentum AGB capiet angulum F.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer