— 27
Exempla:
35a3b7chd: 7a2bac4 —ab3cd
15abc5bc
21a5b3c : —3a 3bc 2b2
:mncn
86. §. Quantitas complexa per incomple
xam dividitur, si quivis terminus prioris per
posteriorem dividatur, et quoti particulares in
summam colligantur. Exempla:
(ab +a) : aab a-a: ab-I
(a2-ab) : a—a2 : a-ab : a—a-b.
ab—aca):—2a
(1542b 3c—5ab2c3): 5ab2 c—3ab—2
(27amr3b5c3—6anbic7+12a5b6c3):
—jabc —anh2am3be4—42b.
87. §. Si dividendus et divisor fuerint quan
ritates complexae, ordinentur ambo secundum
potentias unius judeterminatae (§. 69.); divida
tur primus terminus dividendi per primum divi
soris, quotus inventus ducatur in totum diviso
rem, productum auferatur a dividendo; si am.
bo se tollant, divisio erit finita.
Exempla:
1. (z1a3b2c—35abc 3d): (3a 2 b—5c2 d)Tabe
21a b2c—35abc 3d
II. (18amt3b2 cd—12ambenfid2): (za3h—zend)
Gabed.
18amt3b2cdahd
—