Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

(45) — 
aequalia, quia sunt inter rectas parallelas AD 
et BC. (Fig. 62.) 
136. §. Coroll. In parallelogrammo ABCD 
diagonales AC, BD se mutuo bissecant. (Fig. 59.) 
Dem. Quoniam angulus DAK — KCB, an 
gulus ADK — KBC et latus AD — BC, triangu 
la ADK, BCK erunt congruentia, proinde latus 
AK — KC, latus DK — BK. Ergo diagonales 
se mutuo bissecant. 
137. §. Coroll. 5. Si in figura quadrilatera 
ABCD latera opposita fuerint aequalia, ea erit 
parallelogrammum. (Fig. 59.) 
Dem. Ducatur diagonalis AC. Cum sit las 
tus AB — CD, latus BC— AD et latus AC 
AC, triangula ABC, ACD erunt congruentia, 
proinde angulus BAC — ACD; hinc AB paral 
lela ad CD. Porro angulus ACB— CAD, et inde 
BC parallela ad AD. Quoniam autem in hac fi 
gura quadrilatera latera opposita sunt parallela, 
ea erit parallelogrammum. 
138. §. Coroll. 6. Si extremitates duarum 
parallelarum aequalium AD, BC jungantur li 
neis rectis sese mutuo non intersecantibus AB, 
DC; erunt hae rectae etiam aequales inter se 
et parallelae, et figura ABCD parallelogrammum. 
(Fig. 59.) 
Dem. Ducatur AC. Quia AD, BC sunt pa 
rallelae, erit angulus DAC — ACB. Inde, et 
quia latus AD — BC, latus AC— AC, triangula
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer