Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— ( 19) 
qua crura AC, BC erunt in eadem linea recta, 
(Fig. 35.) 
Dem. Si negetur ACB esse lineam rectam, 
supponatur prolongationem cruris AC cadere in 
CE. Tum vero erit ACD + ECD — 2R. (71.§.) 
Sed cum sit ACD + BCD — 2R., erit quoque 
ACD + ECD = ACD+BCD, et abjecto utrimque 
angulo ACD, remanebit angulus ECD — BCD, 
quod est absurdum. 
73. §. Coroll. 2. Summa angulorum ACD, 
DCE, ECF, FCB, qui formantur a pluribus li 
neis rectis, in eodem plano et in codem puncto 
C lineae rectae AB insistentibus, aequivalet 
duobus angulis rectis. (Fig. 36.) 
Dem. Nam angulus ACE — ACD + DCE, 
et angulus BCE — ECF + FCB; proinde etiam 
ACE + BCE — ACD + DCE + ECF + FCB. 
Sed ACE + BCE — 2R. (71. §.). Ergo etiam 
ACD + DCE + ECF + FCB — 2R. 
74. §. Coroll, 3. Summa angylorum ACB, 
BCD, DCE, ECA, qui formantur a pluribus li 
neis rectis AC, BC, DC, EC, in eodem plano, 
et in eodem puncto Cconcurrentibus, aequivalet 
quatuor angulis rectis. (Fig. 37.) 
Dem. Producatur recta DC ultra C in F, 
et erit tam DCB+BCA+ACF — 2R, quam DCE+ 
ECF— 2R, (73.§.) proinde DCB + BCA + ACF+ 
DCE -+ECF — 4R. Sed ACF + ECF ACE, 
ergo DCB-+BCA + ACE + ECD — 4R. 
B 2
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer