Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— ( 16 )— 
BC. Cum vero sit angulus DEF — ABC, latus 
DE in AB cadere debebit (20. §.), et proinde 
punctum D erit in AB. Porro cum sit angulus 
DFE — ACB, latus DF in AC cadere debebit 
(20. §.), ergo punctum D etiam erit in AC, 
Quoniam igitur punctum D in lateribus AB et 
AC simul adesse debet, necesse erit ut illud sit 
in eorum intersectione A. Proinde triangula 
ABC, DEF sibi mutuo congruunt. 
63. §. Problema. 
Dato latere BC describere triangulum aequi 
laterum. (Fig. 30.) 
Solutio. Centro B, radio BC describatur cir 
culus. Idem fiat centro C et radio BC. Ambo 
rum circulorum peripheriae sese secabunt in 
A.: Ducantur lineae rectae AB, AC et trian 
gulum ABC erit aequilaterum. 
Dem. Nam AB— BC, et AC — BC; quia 
sunt radii in eodem circulo; proinde AB 
AC — BC. 
64. §. Problema. 
Datum angulum ABC bissecare. (Fig. 31.) 
Solutio. Fiat BD — BE et ducatur DE. La 
tere DE construatur triangulum aequilaterum 
DEF (63. §.), et ducatur BF. 
Dem. Latus BD — BE, latus DF — EF, et 
latus BF—BF. Ergo triangula BDF, BEF sunt 
O
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer