Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— ( 15) 
1) Puncta B et C cadunt in oppositas par 
tes rectae AG., Tum erit in triangulo ABG an 
gulus BAG— BGA, quia BG — AB; et in trian 
gulo ACG erit angulus GAC— AGC, quia CG— 
AC; proinde erit BAG + GAC — BGA + AGC, 
seu angulus BAC — BGC. (Fig. 27.) 
2) Puncta B et C cadunt in eandem partem 
rectae AG. In triangulo ACG erit angulus GAC 
= AGC, quia GC— AC; et in triangulo ABG 
erit angulus GAB — AGB, quia GB— AB. Ergo 
etiam GAC—GAB— AGC—AGB, seu angulus 
BAC = BGC. (Fig. 28.) 
3) Recta AG transit per punctum B. (Fig. 29.) 
In hoc casu erit in triangulo ACG angulus 
BAC— BGC, quia GC— AC. 
Cum ergo in quovis casu sit latus AB 
BG, latus AC— GC, et angulus BAC — BGC, 
triangulum ABC erit congruens triangulo BCG 
(56. §.) seu triangulo DEF. Q. e. d. 
62. §. Theorema. 
Duo triangula ABC, DEF congruunt, si la 
tus unum et anguli huic lateri adjacentes in 
primo, aequales sunt uni lateri et angulis huic 
lateri adjacentibus in altero. BO — EF, B—E, 
C—F. (Fig. 24) 
Dem. Concipiatur triangulum DEF colloca 
tum super triangulo ABC ita, ut E cadat in B, 
et latus EF in BC; ergo F cadet in C quia EF
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer