Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— 
— 294 
Exemplum : 
A.) . . . . . mx = ny. 
B.) . . ... r2++y2+22- d. 
C.). ... . 22—22y= b. 
Si Ca B auferatur, habebitur aequatio . .. 
x2++2xy+y2 — a—b; et si ex utraque par 
te radix secunda extrahatur erit x-y—V/a—b). 
Haec aequatio cum aequatione A combinata 
mV(a—b) 
nV(a—b) 
et 
et y 
dat x  
m-n 
m-n 
Vaamn-+b(m2+n2)) 
22b 2y dat z 
m+n 
6t0.) Si quaevis trium aequationum omnes tres 
incognitas contineat, tum primae et secundae 
aequationis ope eliminetur z; et si idem ope 
tertiae et unius priorum aequationum fiat, pro 
dibunt duae aequationes inter x et y, ex qui 
bus ambae istae incognita determinari poterunt. 
Valor tertiae incognitae z inveniri poterit ex 
quavis trium aequationum, si in illis loco a 
et y inventi valores substituantur. 
I Exemplum: 
A) . . . . . 2x — 3y + 2 =6. 
B) ... .. 5x++ 2)—72 =53. 
C). ... 10x—5y— 32 =82. 
Multiplicetur A per 7 et addatur B. 
7A) . .. . . 142— 21y+72= 42. 
2) — 72 = 53. 
B)... 5rc 
19x — 109 = 95. 
Si haec aequatio per 19 dividatur, prodibit: 
D).... r—y - 5.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer