Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

270 
pes divisores termini Q (§. 119.) et tentetur 
quinam eorum aequationi satisfaciant. Ex §. 426. 
dijudicari poterit, cum quo signo isti divisores 
in hoc tentamine adhibendi sint. 
E. g. Aequationis x 2+x — 30—0 tertius ter 
minus 30 dividi potest per numeros I, 2, 33 
59 6, 10, 15, 30. Ex his aequationi satisfa 
ciunt +5 et — 6, qui ergo sunt radices il¬. 
lius. Si inter hos divisores nulli occurrant ; 
qui ae quationem ad nihilum reducant, ea nul 
las radices rationales includet. 
428. §. Jam si in aequatione x 2  Px-Q=0 
quantitates P et Q fuerint rationales, quin ta 
men radices illius a et b sint rationales, necesse 
est, ut istae radices habeant hujusmodi formam, 
nimirum: 
a—p+Vq et b=p—Vq; secus enim nullo mo 
do fieri potest, ut P et Q simul sint numeri 
rationales. Supposita vero forma dabit 
9) — 29 
P (pV)( 
+Va)(p—V-p2 — q; proinde 
et Q=(p 
utramque quantitatem rationalem. 
E. g. Secundum §. 412 aequatio x2—6x-1=0 
habet radices 3 + 2V2 et 3 — 2V2, quarum 
summa est =6, et quarum productum aequa 
tur 9 —8 = 1. 
429. §. Si in aequatione »2 + Pr + Q=0 
P2 
„ radices invenientur imaginariae; 
fuerit( 
igitur in hoc casu factores radicales quoque ima 
ginarii prodibunt.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer