Full text: Appeltauer, Ignatius: Elementorum matheseos purae pars prima continens algebram

— 101 — 
(amn 
— 7 
Ergo in utroque casu exponens radicis in expo 
nentem desideratae potentiae duci debet. 
212. §. Si literae m, n, p, etc. quoscun 
que numeros integros, positivos vel negativos, 
denotent, ex praecedentibus patet esse : 
(am)n = amn et (a" )m — aum proinde etiam 
(am)y = (a* )w. Similiter erit ((am)n Jo 
amn p= amnp; proinde quoque ((am 
)" Jp 
1 — ((ap )n Ju — ((a" )v Ju 
L(an )m 1p. — ((am) 
— ((ap) 
Jm amnp. Idem de quotcunque ex 
ponentibus eodem modo probari potest. E. g. 
(2 (3a2)—1 12 = 4(302)—2 
gat a(abac)s 
— 2502m (2hn c2 )6 — 2502m. 64n2 
16002mb2 
2 3. §. Cum sit (ab)2 — ab. ab  aabb 
a2b2; (ab)3 = a2b2. ab= a3b3 etc. et in gene 
re (aby = anby; porro etiam, quia (ab)—n 
a—nbn ; proinde generatim 
aube 
(ab)y 
(ab)nabnben; et cum idem de quotcunque 
factoribus abed.... demonstrari possit; asserere 
licebit, productum ad potentiam evehi, dum 
quivis illius factor ad eandem potentiam eleve 
tur. E. g. 103 = 23 .53 — 8. 125— 1000. 
(30am )2 = 22. 32.52. d2m 90002m. 
a2 
a a 
214. §. Quia 
52 
= bb 
A 03 
a2 
etc.; generatim erit 
b3 
)
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer