Full text: Euclides: Euclidis Elementorum, sex libri priores

Liber Primus. 
PROP. XXIV. THEOR. 
I duo triangula (EFD, BAC) duo latera duobus aqua 
Fig. 38. 
lia habeant, alterum alteri (FE ipsi AB, & FD ipsi Vide N. 
AC), ex angulis vero sub istis lateribus, unus (BAC) altero 
(F) major sit, erit latus (BC) angulo isti majori oppositum, 
majus latere (ED) angulo minori opposito. 
Ad punctum A, et cum AB latere non majore, con 
(1) ter 
stituatur ad partes ipsius AC angulus BAG, angulo EFD prop. 23. 
(2) per 
aequalis (1), & fiat AG ipsi FD aequalis (2), & ducantur 
prop. 3. 
BG & GC. 
(3) per by 
Quoniam recte AG & AC equales funt (3), erunt an 
poth. 
guli ACG & AGC aequales (4); sed BGC major est cons. 
(4) per 
quam AGC, ergo & major quam ACG, & proinde ma 
prop. 5. 
jor ipso BCG. 
(5) per 
prop. 19. 
In triangulo igitur BGC, angulus BGC angulo BCG 
major est, & proinde latus BC latere BG majus (5); BG (6) per cons 
et prop. 4. 
vero ipsi ED aequatur (6), & ergo BC ipso ED majus est. 
PROP. XXV. THEOR. 
I duo triangula (BAC & EFD) duo latera duobus ha- Fig. 39. 
beant aqualia (BA ips EF, & AC ipsi FD), reli 
quum vero latus (BC) majus reliquo (ED), erit angulus 
(A) isti majori lateri oppositus, major angulo (F) qui minori 
lateri oppönitur. 
Angulus A vel aqualis est ipfi F, vel minor eo, vel 
major. 
Non est aqualis; nam fi fuerit, latus BC lateri ED (1) fer 
aequale esset (1), contra hypothesim» 
prop. 4. 
Non est minor; nam si fuerit, latus BC latere ED 
minus eſset (2), contra hypotheſim. 
(0 ker. 
Quoniam ergo angulus A nec aequalis est angulo F, prop 24 
nec ipso minor, major erit. 
PROP.
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer