Full text: de Sacrobosco, Johannes: Sphaera Ioannis de Sacrobosco

SPHÆRA quorum zenith eſt {in} æqu{in}octiali, quia illorum Ho-
rizon eſt circul{us} tranſiens per polos mundi, diuidens
Æqu{in}octialem ad angulos rectos Sphærales, vnde
dicitur Horizon rect{us} & Sphæra recta. Obliquum
Horizontem ſiue decliuem habent illi, quib{us} pol{us}
mundi eleuatur ſupra Horizontem: & quoniam il-
lorum Horizon {in}terſecat Æqu{in}octialem ad angu-
los impares & obliquos, dicitur Horizon obliqu{us},
& Sphæra obliqua ſiue decliuis. Zenith autem ca-
pitis noſtri ſemper est pol{us} Horizontis. Vnde ex
his patet, quòd quanta est eleuatio poli mundi ſuper
Horizontem, tanta eſt diſtantia zenith ab Æqu{in}o-
ctiali: quod ſic patet: Cùm {in} quolibet die naturali
vterque colur{us} bis iungatur meridiano, ſiue idem ſit
quod meridian{us}, quic
quid de vno proba-
tur & de reliquo. Su-
matur igitur quarta
pars coluri diſt{in}guen
tis ſolſtitia, quæ eſt ab
æqu{in}octiali vſque vſ ad
polum mundi: ſuma-
tur iterum iterũ quarta pars
eiuſdem coluri, quæ
eſt à zenith vſque ad
Horizontem, cùm zenith ſit pol{us} Horizontis. Istæ
duæ quartæ, cùm ſint quartæ eiuſdem circuli, {in}ter
ſe ſunt æquales: ſed ſi ab æqualib{us} æqualia deman-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer