Volltext: Belidor, Bernard Forest de: Nouveau cours de mathématique à l' usage de l' artillerie et du génie

DES MATIERES. Prop . X. Probl . Trouver l’axe d’une parabole donnée. # ibid.
Prop . XI. Probl . Trouver le parametre d’un diametre quelconque. # 299
Prop . XII. Probl . Trouver le foyer d’une parabole. # ibid.

15. CHAPITRE II,
Qui traite de l’Ellipſe.

Prop . I. Theor . Dans l’ellipſe, le quarré d’une ordonnée à l’axe eſt au rec-
# tangle de ſes abſciſſes, comme le quarré du petit axe au quarré du grand
# axe. # 301
Prop . II. Theor . Si des extrêmités de deux diametres conjugués on mene à
# un même axe deux ordonnées, le quarré d’une des abſciſſes correſpondantes,
# à partir du centre, eſt égal au rectangle des parties du même axe, faites
# par l’autre ordonnée. # 304
Prop . III. Theor . Le quarré d’une ordonnée à un diametre quelconque eſt
# au produit de ſes abſciſſes, comme le quarré du diametre parallele aux
# ordonnées, eſt à celui du diametre des abſciſſes. # 305
Prop . IV. Theor . La ſomme des quarrés de deux diametres conjugués eſt
# égale à celle des quarrés des deux axes. # 308
Prop . V. Theor . Si par l’extrêmité de l’axe on mene une tangente qui aille
# rencontrer deux diametres conjugués, prolongés autant qu’il ſera néceſ-
# ſaire, le rectangle des parties de cette tangente eſt égal au quarré de la
# moitié de l’axe qui lui eſt parallele. # 310
Prop . VI. Theor . Si l’on coupe un cône par un plan oblique à la baſe, de
# maniere que les deux côtés du cône ſoient coupés entre le ſommet & la baſe,
# la ſection eſt une ellipſe. # 311
Prop . VII. Theor . Si l’on coupe un cylindre par un plan oblique à la baſe,
# la ſection ſera une ellipſe. # 312
Prop . VIII. Theor . La ſomme des diſtances d’un point de l’ellipſe aux foyers
# eſt égale au grand axe de cette courbe. # ibid.
Prop . IX. Probl . Les deux axes d’une ellipſe étant donnés, la décrire par
# un mouvement continu. # 314
Prop . X. Probl . Trouver le centre & les axes d’une ellipſe donnée. # 315

16. CHAPITRE III,
Qui traite de l’Hyperbole.

Prop . I. Theor . Dans l’hyperbole, le quarré d’une ordonnée à l’axe eſt au
# rectangle de ſes abſciſſes, comme le quarré de l’axe parallele aux ordonnées
# eſt au quarré de l’axe ſur lequel on prend les abſciſſes. # 316
Prop . II. Theor . Si une droite parallele au ſecond axe coupe l’hyperbole en
# deux points, le quarré du ſecond axe eſt égal au rectangle des parties de
# cette ligne, terminée aux aſymptotes. # 318
Prop . III. Theor . Si l’on a deux lignes paralleles & terminées aux aſymp-
# totes, les rectangles de leurs parties ſont égaux. # 319
Prop . IV. Theor . Si par deux points quelconques d’une hyperbole ou de deux
# hyperboles oppoſées, on mene quatre lignes paralleles entr’elles deux à
# deux terminées aux aſymptotes, les rectangles des parties de ces lignes
Waiting...

Nutzerhinweis

Sehr geehrte Benutzerin, sehr geehrter Benutzer,

aufgrund der aktuellen Entwicklungen in der Webtechnologie, die im Goobi viewer verwendet wird, unterstützt die Software den von Ihnen verwendeten Browser nicht mehr.

Bitte benutzen Sie einen der folgenden Browser, um diese Seite korrekt darstellen zu können.

Vielen Dank für Ihr Verständnis.

powered by Goobi viewer