Full text: Pergaeus, Apollonius: Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi

49. Notæ in Propoſitionem IX. & X.

AT in hyper-
bola, & el-
lipſi educamus G
F ad a ex A D, & H N ad s ex F G,
& I S ad T ex C
G, ſi educta oc-
currat ſectioni ad
A, & M Q poſita
ad m ex a, F G,
& X in I T, & ex
m, S X, m y, x n,
S Z inter N S, M
X, & c. Eadẽ phraſi
inconcinna exponi-
tur vniuerſa con-
ſtructio buius pro-
poſitionis, ideo cu-
raui eam reddere
clariorem, dicendo; Educamus rectas lineas G F quidem ſec antem A D in a, & c.

49.1.

g
0059-01

Quadratum igitur I H eſt æquale triangulo I H S, & c. Qaia nimirum. Quadratum I H eſt æquale duplo iſoſcelei, & rectanguli trianguli I H S.

49.1.

h

Et ſimiliter quadratum I Q æquale eſt duplo trianguli I Q X, & c. Sci-
licet duplo trapezij I S m Q cum duplo trianguli S m X.

49.1.

i

Et hoc quidem propter ſimilitudinem triangulorum, at componendo
proportionem in hyperbola, tum inuertendo, & reflectendo in ellipſi
fit, & c. Huiuſmodi verba inepta ad concluſionem inferendam commutaui di-
cendo; Quare comparando priores ad ſummas terminorum in hyperbola, & ad
eorum differentias in ellipſi fit, & c. Quæ quidem expeditè (vt in primo præce-
cedentium Lemmatum oſtenſum eſt) progreſſum declarant.

49.1.

k
l

Vt proportio inclinati, ſiue tranſuerſæ ad latitudinem figuræ compara-
tæ; igitur planum m n eſt exemplar, & c. Subiungo: nam, vt dictum eſt in
quinta, & ſexta huius, poteſt hìc demonſtrari, quod figura m n ſimilis eſt ei,
quæ continetur latere tranſuerſo E C, & ſumma in hyperbola, & differentia in
ellipſi laterum tranſuerſi, & recti iuxta definitiones octauam, & nonam.

Quadratum R I æquale eſt duplo trianguli R V I, & quadratum O R in
hyperbola æquale eſt duplo trapezij R G, & in ellipſi æquale eſt duplo
trapezij R K, & c. Legendum puto quadratum R I æquale eſt duplo trianguli
R V I, & quadratum O R æquale eſt duplo trapezij R G, at in ellipſi quando
O R cadit infra centrum F æquale eſt duplo trapezij R K, & c. Deindè
quum triangulum R V I ſimile ſit triangulo I H S propter parallelas V R, S
H; ideò triangulum R V I erit quoque iſoſceleum, & rectangulum. Poſtea qua-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer