Full text: Pergaeus, Apollonius: Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi

0178-01

Quoniam facta conuenienti ſuperpoſitione axis A M ſuper axim D
O, cadet quoque ſectio A B ſuper ſectionem D E: ſi enim non cadit ſu-
per illam, ſumatur (ſi fieri poteſt) eius punctum B, extra ſectionem. D E cadens; & producatur ad axim perpendicularis B L vſque ad P: & perficiatur planum A P applicatum comparatum; & ſecetur D N æqua-
lis A L, & erigatur per N ad axim perpendicularis N E, & producatur
vſque ad R, perficiendo planum D R applicatum comparatum; Et quia
A I æqualis eſt D K, & A L æqualis D N: erit planum I L, æquale pla-
no K N; cumque G I, H K ſint duæ figuræ ſimiles, & æquales, pariter-
que I P, K R; ergo duo plana A P, D R ſunt æqualia: & propterea E
N, B L, quæ illa ſpatia poſſunt (13. 14. ex 1.) ſunt æquales. Si autem
ſuperponatur axis axi cadet B L ſuper E N, eoquod duo anguli N, & L
ſunt æquales; igitur B cadit ſuper E, quod prius cadere non concedeba-
tur: & hoc eſt abſurdum. Quapropter ſectio ſectioni æqualis eſt.

170.1.

b
12. 13.
lib. I.

Deinde ponamus duas ſe-
ctiones æquales, vtique con-
gruet ſectio A B ſectioni D E,
& axis A L axi D N, quia ſi
non cadit ſuper illum, eſſent
in hyperbola duo axes, & in
ellipſi tres axes, quod eſt ab-
ſurdum (52. 53. ex 2.) Et fi-
at A L æqualis D N, & reli-
qua perficiantur, vt prius ca-
dent duo puncta L, B ſuper
N, E; ideoque B L æqualis
erit E N; & poterunt æqua-
lia rectangula A P, D R applicata ad æquales A L, D N (13. 14. ex 1.) ergo L P æqualis eſt N R. Similiter ponatur A M æqualis D O, & edu-
cantur C M Q, F O S duæ ordinationes, oſtendetur, quod M Q æqua-
lis eſt O S, & L M æqualis N O; & propterea duo plana P Q, R S ſunt
æqualia, & ſimilia; igitur duo plana G P, H R ſunt æqualia, & ſimilia,
& L P oſtenſa eſt æqualis N R: ergo G L æqualis eſt H N, & A L æ-
qualis D N; & propterea G A æqualis eſt D H, & A I æqualis D K.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer