# Full text: Pergaeus, Apollonius: Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi

Conicor. Lib. VI. pespendicularis B E, & perficiatur
planũ E I. Et quia A I, A E æquã-
tur C N, C F, vnaquæque ſuo ho-
mologo: igitur planum I E, nempe
(12. ex 1.) quadratum B E æquale
eſt rectangulo F N, nempe quadrato
D F (12. ex 1.) ergo B E æqualis
eſt D F; ſi autem ſuperponatur axis
axi cadet D ſuper B, quæ tamẽhaud
cadere conceſſum fuerat: & hoc eſt
abſurdum; ergo fieri non poteſt, vt
duæ ſectiones æquales non ſint.

### 169.1.

b
11. lib. 1.
Ibidcm.

Præterea ſupponamus duas illas ſe-
ctiones æquales eſſe inter ſe, & fiat
F C æqualis E A, & educamus ad
axes perpendiculares B E, D F, & per-
ficiamus plana rectangula F N, E I. Quia ſectio A B cadit ſuper ſectionem C D, & A E ſuper C F cadet; alioquin eſſent in eadem parabola duo axes: ergo F cadit ſuper E, & D
ſuper B, & propterea B E potens planum E I (12. ex 1.) æqualis erit
D F potenti planum F N (12. ex 1.) ; ergo duo plana ſunt æqualia; ſed
ſunt applicata ad æquales F C, A E; igitur C N, A I erectæ æquales
ſunt. Et hoc erat oſtendendum.

c
11 lib. 1.
Ibidem.
d

## 170.PROPOSITIO II.

SI duæ ſectiones hyperbolicæ, aut duæ ellipſes A B C, D E
F habuerint axium figuras G I, H K ſimiles, & æquales; duæ illæ ſectiones æquales erunt. Si verò duæ ſectiones æquales
fuerint, earũ figuræ axiũ erunt æquales, ſimiles, & ſimiliter poſitæ.

a

## Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer