Full text: Musschenbroek, Petrus: Physicae experimentales, et geometricae de magnete, tuborum capillarium vitreorumque speculorum attractione, magnitudine terrae, cohaerentia corporum firmorum dissertationes

CORPORUM FIRMORUM. unde eruitur x = {cddrr/aacr + 12ap}

547. PROPOSITIO LXVIII.

Tab. XXVI. fig I. Data Conoide Parabolica D B E, datoque
pondere appenſo P, cujus momentum ſimul cum momento Conoidis
ex gravitate, ad momentum Cobærentiæ ejuſdem ſolidi quamlibet
babeat rationem; Conoidem datam ita producere in F, ut ejus pon-
deris momentum ad ſuam Cobærentiam ſit in eadem ratione.

Ponatur G D radius = r. peripheria circuli baſeos = c. G B = a. pondus P = p. B F quæſita = x. erit C F radius baſeos = {rrx/a}. & peripheria circuli baſeos = c {x/a}.

Eſt ſolidum DBE = {acr/4}. ejus momentum ex gravitate = {aacr/12}. & momentum ponderis P = ap. Cohærentia = 8r 3 . Eſt autem
ſolidum A B C = {1/4} crx{x/a}, ejusque momentum {crxx/12}{x/a}. & Cohæ-
rentia = 8 {r 6 x 3 /a 3 }. Quia igitur ambo momenta Conoidum ad ſuas
Cohærentias ſupponuntur eſſe in eadem ratione, erit {aacr/12} + ap. 8r 3 : : {crxx/12} {x. /a}. {8r 3 x/a} {x/a}.

Quorum extremis mediisque terminis per ſe multiplicatis, at-
que diviſione facta per 8 {x/a}. fit {cr 4 xx/12} = {aacr 4 x/12a} + {apr 3 x/a}. & inſtituta diviſione per {cr 4 /12}. fit
x x = ax + 12{px/cr}. unde per tranſpoſitionem.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer