Volltext: Cavalieri, Bonaventura: Geometria indivisibilibvs continvorvm

LIBER VI. M4, P6, ℟k, pariter compoſita, ita vt circumſcripta ſuperet inſcri-
ptam minori ſpatio, quam ſit differentia dictarum figurarum (quę
differentia ſit ſpatium, Ω,) igitur trilineum, H℟FK, minori quã-
titate ſuperabit figuram inſcriptam, quam ſpatium reſiduum por-
tionis circuli, VHC, ergo figura inſcripta erit maior dicto reſiduo,
quod eſt abſurdum, nam ſi, AC, diuidamus ſimiliter, vt, KH,
in punctis, IBD, & deſcripſerimus per eadem puncta ſuper centro,
A, circumferentias, INS, BRZ, DΠΟΣ, oſtendemus, vt in ante-
cedenti figuram compoſitam ex faſcijs, ΙΒβ, ΒDΔ, DCΧΦ, eſſe
æqualem figuræ inſcriptæ trilineo, H℟Fk, & conſequenter eſſe
maiorem ſpatio reſiduo portionis circuli, VHC, cui tamen inſcri-
bitur, quodeſt abſurdum.

634.1.

2. huius.
10. l. 4.

Sit nunc trilineum, H℟Fk, minus eodem, Ω, dicto reſiduo, & cætera, vt prius conſtructa, quia ergo circumſcripta figura ſuperat
inſcriptã minorr quantitate, quam ſit, Ω, ſuperabit ipſum trilineũ,
H℟FK, multò minori quantitate, ergo figura circumſcripta mi-
nor erit ſpatio reſiduo portionis circuli, VHC, oſtendemus autem,
vt ſupra figuram compoſitam ex ſectore, ANI, & ex faſcijs, IBR,
BDO, DCV, eſſe æqualem figuræ circumſcriptæ trilineo, H℟Fk,
ergo erit minor ſpatio reſiduò iam dicto, cui tamen circunſcribitur
quod eſt abſurdum, trilineum ergo, H℟Fk, neq; maius, neq; mi-
nus eſt ſpatio reſiduo iam dicto, ergo illi æquale, ſicut triangulus,
HFK, eſt æqualis portioni circuli, cuius baſis eſt circumferentia,
CHV, ſed triangulus, HFk, eſt ſexquialter trilinei, H℟FK, ergo
talis portio eſt ſexquialtera ſpatij reſidui iam dicti, ergo eſt tripla
ſpatij, quod ſpirali, AROV, & recta, AV, continetur, quod erat
oſtendendum.

634.1.

Elicitur
ex prima
1. 4.

635. THEOREMA XI. PROPOS. XI.

SI ab initio ſpiralis in prima reuolutione ortæ educan-
tur rectæ lineæ vtcumque ad ipſam ſpiralem terminã-
tes, ſpatia ſub portionibus ſpiralis abſciſsis per eductas
verſus initium, erunt vt cubi earundem eductarum.

Sit ſpiralis in prima reuolutione orta, ACDB, ipſa, AB, reuo-
luta, & ſpiralis initium, A, à quo ad ipſam ſpiralem terminantes
ſint eductæ vtcumq; AC, AD. Dico ſpatium ſub portione ſpira-
lis, AXC, & educta, AC, ad ſpatium ſub portione ſpiralis, AXCD,
& educta, AD, eſſe vt cubum, AC, ad cubum, AD. Centro igitur,
A, interuallis, C, D, ſint deſcripti circuli, CMVN, DGE, & ſit

Waiting...

Nutzerhinweis

Sehr geehrte Benutzerin, sehr geehrter Benutzer,

aufgrund der aktuellen Entwicklungen in der Webtechnologie, die im Goobi viewer verwendet wird, unterstützt die Software den von Ihnen verwendeten Browser nicht mehr.

Bitte benutzen Sie einen der folgenden Browser, um diese Seite korrekt darstellen zu können.

Vielen Dank für Ihr Verständnis.

powered by Goobi viewer