## Full text: Cavalieri, Bonaventura: Geometria indivisibilibvs continvorvm

LIBER VI. ſunt circulorum, à quibus abſcinduntur partes proportionales, ipſi au-
tem circuli ſunt, vt diametrorum quadrata.

## 622.THEOREMA IV. PROPOS. IV.

DAti circuli, necnon ſimiles fectores inter ſe ſunt, vt
omnes eorundem circumferentiæ.

FXZ, deſcripti ſuper eodem centro, E, & abijſdem intelligantur
abſciſſi ſimiles ſectores, D
ED, XEZ. Dico circulos,
DABC, FZX, necnon ſe-
ctores, DEC, XEZ, inter ſe
eſſe, vt omnes iplorum cir-
cumferentiæ. Sit denuò
expoſitũ triãgulum, HOM,
cuius ſit angulus rectus, H
MO, latus, HM, æquale ra-
dio, ED, & , MO, circum-
ferentiæ, DCBA, abſciſſa
autem, HR, æqualr ipſi,
EX, & per, R, ducta paral-
lela ipſi, OM, quæ ſit, SR, intercepta lateribus, HO, HM, patet,
vt dicebatur in Corol. 2. ant. Propoſ. quod circumferentia, FZX,
æquatur ipſi, SR, eodem modo abſcindentes ab ipſis, HM, ED,
verſus, H, E, puncta æquales quaſcunque rectas lineas, & per ea-
rum terminos ducentes parallelam quidem ipſi, OM, in triangulo,
& circumfer entiam iuper cenrro, E, in circulo, ABCD, manife-
ſtum erit prædictam circumferentiam æquari prædictæ parallelæ,
lateribus, HO, HM, interceptæ, & vnicuique circumferentiæ in
circulo, ABCD, fic deſcriptæ reſpondere ſuam parallelam in triã-
gulo, HOM, cum ſint rectę, HM, ED, æquales, igitur conclude-
mus omnes circumferentias circuli, DABC, æquari omnibus li-
neis trianguli, HOM, regula, OM, ſicut etiam omnes circumfe-
rentias circuli, FZX, æquari omnibus lineis trianguli, HSR, regu-
omnes lineas trianguli, HSR, ideſi vt triãgulum, HOM, ad, HSR,
ideſt vt circulus, DABC, ad circulum, FZX, ita omnes circumfe-
rentiæ circuli, ABCD, erunt ad omnes circumfarentias circuli
ciuidem, FZX; quod & fimuli methodo de ſectoribus ex. g. DEC,

### Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.