Full text: Viviani, Vincenzio: De maximis et minimis, geometrica divinatio

342. COROLL. I.

HInc colligitur, quod puncta media rectarum quarumlibet applicata-
rum in ſectione per axem ducta, cuiuſcunque prædictorum ſolidorũ,
ſunt centra baſium earum portionum ſolidarum à planis per eaſdem rectas
ductis, atque ad eandem ſectionem per axem erectis abſciſſarum.

Nam puncta media G, H, applicatarum E F, C D demonſtrata ſunt
eſſe centra prædictarum baſium E O F, C P D, & c.

343. COROLL. II.

PErſpicuum eſt quoque, baſes ſolidarum portionum inter ſe æqualium
eiuſdem Coni recti, vel Conoidis Parabolici, aut Hyperbolici, Sphe-
ræ, aut Sphæroidis oblongi, habere inter ſe axes minores æquales, ſiue eſſe
æqualium latitudinum, ac ideò eſſe inter ſe, vt axes maiores, vel vt baſes
rectorum Canonum. Baſes verò æqualium portionum eiuſdem Sphæroidis
prolati habere maiores axes æquales, ac propterea eſſe inter ſe vt axes mi-
nores, vel vt baſes eorundem rectorum Canonum.

Etenim, in pręcedentibus figuris, de baſibus E O F, C P D (vel ſint Cir-
culi, vel Ellipſes) portionum ſolidarum E A F, C A D, quas æquales eſſe
demonſtrauimus, oſtenſum priùs fuit ſemi- axes minores G O, H P in Co-
no recto, vel Conoide, aut Sphæroide oblongo eſſe æquales, ac ideò, & eorum duplos, hoc eſt integros minores axes æquales eſſe; & paulò poſt
circulum, vel Ellipſim E O F ad C P D eſſe vt maior axis E F ad maiorem
C D, vel vt baſis recti Canonis E A F, ad baſim recti Canonis C A D. In
Sphæroide autem prolato demonſtratum eſt ipſas G O, H P maiores ſemi-
axes, item æquales eſſe, ſiue integros maiores axes æquales, & poſtea cir-
culos, vel Ellipſes E O F, C B D habere inter ſe eandem rationem, ac ipſi
minores axes E F, C D; nimirum eſſe inter ſe, vt ſunt baſes rectorum
Canonum E A F, C A D.

344. THEOR. L. PROP. LXXIX.

Solidæ portiones eiuſdem Coni recti, vel cuiuſcunque Conoi-
dis, vel Sphæræ, aut cuiuslibet Sphæroidis tunc æquales ſunt,
qnando, in Cono, portionum axes pertingant ad idem Conoides
Hyperbolicum concentricum, & c. In Conoide verò Parabolico,
quando portionum axes ſint æquales. At in Conoide Hyperboli-
co, Sphæra, aut quocunque Sphæroide, quando portionum axes,
ad proprias ſemi- diametros ijſdem axibus in directum poſitas, ſint
in vna eademque ratione.

ETenim quandò in portionibus eiuſdem cuiuſcunque prædictorum ſoli-
dorum diametri rectorum Canonum habuerint relatiuè conditiones

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer