Full text: Gravesande, Willem Jacob: Physices elementa mathematica, experimentis confirmata, sive introductio ad philosophiam Newtonianam

MATHEMATICA LIB. III. CAP. VI. ſam in his partibus, in eadem tamen illam non variari. Con-
ſiderandæ ſunt hæ partes ut duo diverſa ſpatia attractionis. Sit A celeritas, quam lumen primam partem ſpatii percurren-
do acquirit, quando ſpatium intrat celeritate o. ; ſit B cele-
ritas ſecundam partem ſpatii percurrendo acquiſita, quan-
do itidem lumen hanc partem celeritate o. intrat. Notan-
dum in hac demonſtratione ubique agi de motu perpendicu-
lari ad ſuperficiem, qua media ſeparantur.

481.1.

TAB. IV.
fig. 4.

Intret lumen primam partem ſpatii memorati celeritate
o. ad ſecundam partem accedet celeritate A; ſi ergo lateri-
bus A & B triangulum formetur rectangulum ECD, hy-
potenuſa ED deſignabit celeritatem qua lumen ex ſpatio
attractionis exibit .

636.

Si lumen celeritate FG ſpatium attractionis intret, for-
metur triangulum rectangulum HFG lateribus FG & A; hypotenuſa HG erit celeritas, qua lumen prima par-
te ſpatii attractionis exit , & in ſecundam penetrat; for- mando autem triangulum rectangulum HGI cujus perpen-
dicularis æqualis ſit lineæ B, datur hypotenuſa IG deſignans
celeritatem qua lumen exit, & poſt totum ſpatium attractio-
nis percurſum motum continuat .

481.1.

636.
636.

Demonſtrandum autem eſt celeritatem IG etiam eſſe
hypotenuſam trianguli rectanguli NML, cujus latus ML
æquale eſt FG celeritati, qua lumen ſpatium attractionis
intrat, & cujus latus alterum LN æquale eſt lineæ ED,
celeritati, quam lumen acquirit totam latitudinem ſpatii re-
fractionis percurrendo, quando hoc intravit celeritateo. ; quo
demonſtrato & in hoc caſu, in quo duæ diverſæ vires at-
tractionis agunt, propoſitionem n. 636. obtineri patebit.

Lineas vero I [?] & NM æquales eſſe ex conſideratio- ne triangulorum rectangulorum facile liquet. Quadratum
lineæ NM valet quadrata linearum NL & LM aut
FG: NL æqualis lineæ ED, cujus quadratum valet quadra-
ta linearum EC & CD, aut linearum A & B, æqualium
lineis FH & HI: Æquale ergo eſt quadratum hypotenu-
ſæ NM tribus quadratis linearum FG, FH, & HI. Qui-
bus iiſdem tribus quadratis æquale eſt quadratum lineæ

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer