Full text: Gravesande, Willem Jacob: Physices elementa mathematica, experimentis confirmata, sive introductio ad philosophiam Newtonianam

MATHEMATICA. LIB. II. CAP. XII. hoc agunt: ergo æqualiter eundem motum ejuſdem corporis mutare poſſunt; eſt-
que retardatio, quam corpus in fluido patitur in primo momento, æqualis
velocitati, quam in momento æquali corpus adſcendens, & quod gravitas
retardat, amittit.

356.1.

1005.
0387a-01

Sit nunc C c retardatio quam corpus patitur percurrendo AD, erit C c
velocitas quam corpus amittit, adſcendendo ad altitudinem AD, quando gra-
vitate retardatur. Concipiamus nunc parabolam deſcriptam, cujus axis ſit
AB, & quæ per puncta C & E tranſeat, id eſt eandem habeat tangentem
AT cum logarithmica, quæ per C & E tranſit, & cujus Aſymtos eſt
AB.

Ordinatæ logarithmicæ hujus deſignabunt velocitates corporis in fluido mo-
ti, cujus velocitas in A eſt AC: & AX axis parabolæ, cujus vertex eſt X, demonſtrabit altitudinem ad quam corpus, velocitate AC in altum proje-
ctum, & ſola gravitate retardatum, poteſt adſcendere ; igitur XA, dimi- dium ſubtangentis AT, deſignat altitudinem a qua corpus in vacuo cadendo ac- quirit velocitatem, qua ſi corpus per fluidum moveatur, reſiſtentiam patitur pon-
deri ipſius corporis æqualem, quæ altitudo datur .

356.1.

998.
995.
1006.
la Hire
ſect. con.
lib. 2.
prop 20.
930.

Hiſce poſitis ſequentia ſponte ſequuntur.

Ut altitudo, à qua corpus in vacuo cadendo, acquirit velocitatem, quæ dat re-
ſiſtentiam pondericorporis æqualem, ad ſpatium à corpore in fluido percurſum, ita
dimidium ſubtangentis tabularum, 0, 21714. 72409. , ad logarihtmum rationis in- ter velocitates in initio & in fine ſpatii .

356.1.

1007.
987.
938.

Numeri quicunque in tabulis, quorum logarihtmorum differentia eſt lo-
garithmus rationis detectus, ſunt inter ſe ut hæ velocitates .

356.1.

1008.
982. 980.

Eâdem hac regulâ, data ratione inter velocitates in initio & fine ſpatii per-
curſi, detegitur ſpatium hoc.

356.1.

1009.

Logarihtmus rationis 2. ad I. habetur, ſubtrahendo ex log. numeri duo
0, 30102. 99957. log. o. unitatis, ergo ut o, 21714. 72409, ad 0, 30102. 99957,
id eſt, ut 10000000000. ad 13862945972. , ita altitudo, a qua in vacuo caden-
do corpus acquirit velocitatem, quæ dat reſiſtentiam ponderi æqualem, ad
ſpatium in quo corpus dimidium velocitatis amittit . Congruit hoc cum indicatis in n. 962.

356.1.

1010.
1007.

Si in puncto quocunque retardatio ex ſecunda cauſa fiat æquabilis, ſpatium
in quo tota deſtruitur velocitas dimidiata ſubtangente repræſentatur, ut ſequi-
tur ex demonſtratione n. 1005, quæ & hîc applicari poteſt; cum autem ſub-
tangens conſtans ſit , ſequitur etiam in fluido homogeneo, quale in his ubi- que ponimus, ſpatium illud non mutari, quomodocunque varietur veloci-
tas, & æquari altitudini a qua in vacuo cadendo corpus acquirit velocitatem, qua
poſitâ, reſiſtentia ponderi æqualis eſt.

356.1.

1011.
984.
1006.

357. SCHOLIUM 5.
De ambabus Retardationibus conjunctim.

Sit A M linea, quam corpus in fluido percurrit; ſit hæc Aſymtos loga-
rithmicæ ISP; cujus AI eſt ordinata; ſit præterea GFB parabola cu-
jus axis eſt IB; vertex B; ordinata GI, parallela AM; Parameter BI: Si
AB fuerit ad BI, ut retardatio ex prima cauſa ad retardationem ex ſecun-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer