Full text: Gravesande, Willem Jacob: Physices elementa mathematica, experimentis confirmata, sive introductio ad philosophiam Newtonianam

156. SCHOLIUM. 3.
In quo quædam in boc capite memoratæ Cycloidis
proprietates demonſtrantur.

Poſitâ cycloidis memoratâ formatione; ſit circulus generator BEF. Pona- mus hunc perveniſſe ad punctum Gbaſeos, punctum F erit in f, poſito arcu Gf
lineæ GF æquali; Punctum deſcribens erit in b, & erit hoc punctum Cycloïdis-

156.1.

34.
282.
TAB. XII.
fig. 4.

Ducatur G c H diameter per punctum contactus, erit hæc ad baſin per-
pendicularis , & parallela diametro BF. Ductâ nunc b L, per punctum Cycloïdis b, baſi parallelâ, ſecante circulum FEB in E, & GH in I; ma-
nifeſtum eſt, propter æquales GI & FL , in circulis æqualibus æquales eſſe b I, EL; additâ utrimque IE æquales erunt b E, IL, cui æqualis
GF .

156.1.

18. El. III.
34. El. I.
34. El. I.

Facile etiam liquet arcus G f, b H, EB, æquales eſſe inter ſe & lineæ
GF; ideoque lineæ b E.

Ex quibus hanc curvæ deducimus proprietatem, Si ex puncto quocunque Cy-
cloidis ad baſin ducatur parallela, quæ ſemicirculum ſecat ſuper axe deſcriptum
ad partem curvæ, qualis linea hìc eſt b EL, erit hujus portio, inter Cycloi-
dem & ſemicirculum intercepta, æqualis arcui ſemicir culi inter lineam memora-
tam & verticem intercepto. id eſt b E arcui EB æqualis eſt.

156.1.

315.

Sit Cycloïs ADB; vertex B; baſis AF; axis BF, qui diameter eſt ſemi-
circuli FMB.

156.1.

316.
TAB. XII.
fig. 5.

Sumtâ D d portione quacunque infinitè exigua Cycloïdis, poterit hæc
pro lineâ rectâ haberi, & continuatâ formabit tangentem in puncto D aut d. Ducantur DL, dl, ad baſin parallelæ ſemicirculum ſecantes in E, e; & ductâ B e continuetur hæc donec ſecet in b lineam DL; ſit etiam BO ad ba-
ſin parallela, circulum tangens in B, & quæ in O ſecatur lineâ eO, con-
tinuatione lineæ E e.

Triangula b Ee & e OB, propter Bo & hE parallelas ſunt ſimilia. La-
tera autem EO & OB ſunt æqualia ; ergo & æqualia e E, h E; eſt eE ar- cuum B e BE, aut linearum de, DE, differentia ; quæ eadem differen- tia eſt ideò etiam h E, quare ſunt æquales parallelæ D h, de; ſuntetiam id-
circo æquales & parallelæ D d, b e . id eſt tangens in d parallela chordæ e B, quam Cycloïdis proprietatem ſuperius indicavimus in n. 285.

156.1.

36. El III.
315
33. El I.

Iiſdem poſitis ducatur FE i; erit hæc ad BE aut B b (propter augulum
infinite exiguum e BE) perpendicularis , dividetque baſin trianguli iſoce- les b E e in duas partes æquales ita, ut ei ſit dimidium ipſius eb aut d D. Eſt verò ei differentia inter chordas BE, Be; nam ſi centro B, radio BE,
circulus deſcribatur coincidet hic cum Ei, quæ infinite exigua eſt; & D d
eſt differentia arcuum Cycloidis DB, dB.

156.1.

317.
31. El. III,

Concipiamus nunc lineam ad baſim Cycloidis AF parallelam moveri à
B ad F, aliamque lineam interea circa B ita rotari, ut continuo tranſeat
per interſectionem primæ cum ſemicirculo. Ubi prima Ex. gr. pervenit
ad dl erit ſecunda in B e, translatâ primâ ad DL rotatur ſecunda ut ſit in
BE. In hoc motu, commune initium habent, & continuo augentur, arcus
Cycloïdis DB & chorda EB; ſed illius augmentum ſemper duplum eſt au-
gmentihujus, quare & integer arcus qui eſt ſumma augmentorum, erit du-
plusintegræ chordæ, quæ etiam ſummam valet augmentorum ſuorum. Ha-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer