Full text: Bithynius, Theodosius: Theodosii Tripolitae Sphaericorum libri tres

larem ex B, in planum circuli AECf , demiſſam, ita ſinus arcus AG, ad perpendi-
cularem ex G, in planum circuli AECF, demiſſam: propterea quòd ſinus arcuum
AB, AG, ſuntipſæmet perpendiculares ex B, G, in planum circuli AECF, demiſſæ
cadentes in rectam AC, communem circulorum ſectionem, vt patet.

38. vndee.

HINC facile demonſtrari poterunt ſequentia theoremata, quorum nonnulla pl@
rimum ad ſphæricorum triangulerum calculum conducunt. Primum autem ac ſecun-
dum ſunt duo Theoremata Ptolemæi Cyclica in primo lib. Almageſti, ſed multo bre-
uius, ac facilius demonſtrata ex ijs, quæ in hoc ſcholio oſtenſa ſunt. Vnde omittend@
@on videbantur, licet eorum vſus in hiſce triangulis non appareat.

541. I.

SI in ſphæræ ſuperficie ab vno puncto duo arcus maximorum
circulorum educantur, quorum vterque ſemicitculo ſit minor, & ab
eorum terminis in ipſos reflectantur alij duo arcus maximorum cir-
culorum ſe inter duos illos priores arcus interſecantes: proportio,
quam ſinus ſegmẽti vnius eductorum arcuum inter terminum eius,
& arcum reflexum habet ad ſinum alterius ſegmenti eiuſdem arcus
educti, componitur ex proportione, quam ſinus ſegmenti arcus re-
flexi inter eundem terminum, & alterum arcum reflexum habet ad
ſinum alterius ſegmenti eiuſdem arcus reflexi, & ex proportione,
quam ſinus ſegmenti alterius eductorum arcuum inter eius termi-
num, & arcum reflexum habet ad ſinũ totius eiuſdem arcus educti.

E X puncto A, in ſuperficie ſpharæ educantur duo arcus AB, AC, ſemicirculis
minores, & à terminis B, C, reflectantur adipſos duo arcus BD, CE, ſe interſe-
cantes in F. Dico proportionem ſinus arcus BE, ad ſinum arcus EA, componi ex pro-
portione ſinus arcus Bf , ad ſinum arcus F D, & ex proportione ſinus arcus CD, ad
ſinum arcus CA. Ductis enim ex punctis B, A, D, ad planum
circuli CE, tribus perpendicularibus BG, AH, DI; quoniam
duo circuli AB, CE, ſe mutuo ſecant in E, & ex punctis B, A,
in planum circuli Ce , demiſſæ ſunt perpendiculares B G, AH; erit vt ſinus arcus EB, ad ſinum arcus EA, ita recta BG, ad
rectam AH: Item quoniam duo circuli BD, C E, ſe mutuo
ſecant in F , & ex punctis B,D, in planum circuli CE, deductæ
ſunt perpendiculares BG, DI; erit eadem ratione, vt ſinus ar-
cus FB , ad ſinum arcus FD, ita recta BG, ad rectam DI: De-
nique quia duo circuli AC, CE , ſe interſecant in C, & ex
punctis D, A, in planum circuli CE , demiſſæ ſunt perpendi-
culares rectæ lineæ DI, AH; erit ſimiliter, vt ſinus arcus
CD, ad ſinum arcus CA, ita recta DI, ad rectam AH. Pro-
p@rtio autem recta BG, ad rectam AH, (poſita media linea DI.) componitur ex pro-
portione rectæ BG, ad rectam DI, & ex proportione rectæ DI, ad rectam AH. Igi-
tur & proportio ſinus arcus BE , ad ſinum arcus EA, (quæ eadem eſt, quæ propor-
tio BG, ad AH.) componetur ex proportione ſinus arcus BF, ad ſinum arcus FD,
(quæ eadem eſt, quæ proportio BG, ad DI.) & ex proportione ſinus arcus CD, ad
@inum arcus AC, (quæ eadem eſt, quæ DI, ad AH.) quod eſt propoſitum.

541.1.

414-01
Schol. 40.
huius. &
permutan.
do.
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer