Full text: Bithynius, Theodosius: Theodosii Tripolitae Sphaericorum libri tres

POSITO eodem triangulo ſphærico, & conſtructione figuræ eadem; Sint primum duo anguli B, C, duobus rectis æquales ſupra latus BC. Dico
reliqua duo latera AB, AC, ſemicirculo æqualia eſſe, & c. Cum enim & an-
guli duo ad C, æquales ſint duobus rectis; dempto
communi angulo ACB, remanebit angulus ACD,
angulo B, æqualis. Quare ſemicirculo æquales ſunt
arcus AB, AC.

504.1.

382-01
5. huius.
15. huius.

SINT deinde anguli B, ACB, duobus rectis mi-
nores. Cum ergo duo anguli ad C, ſint duobus rectis
æquales; dempto communiangulo ACB, remane-
bit angulus ACD, maior angulo B. Arcus ergo AB,
AC, ſemicirculo ſunt minores.

504.1.

5. huius.
15. huius.

SINT denique anguli B, ACB, duobus rectis maiores. Cum ergo duo
anguli ad C, ſint æquales duobus rectis; ſi dematur communis angulus ACB,
erit reliquus ACD, reliquo B, minor; atque adeo arcus AB, AC, ſemicir-
culo maiores. Quo circa ſi cuiuſcunque trianguli ſphærici, & c. Quod oſten-
dendum erat.

504.1.

5. huius.
15. huius.

505. THEOR. 16. PROP. 18.

SI duo triangula ſphærica habeant tria latera
tribus lateribus æqualia, ſingula ſingulis: habebũt
& tres angulos tribus angulis æquales, ſingulos
ſingulis, ſub quibus æqualia latera ſubtenduntur.

SINT duo triangula ſphærica ABC, DEF, habentia tria latera AB,
AC, BC, tribus lateribus DE, DF, EF, ſingula ſingulis, æqualia. Dico & angulostres A,B,C, tribus angulis D,E,F, ſingulos ſingulis, eſſe æquales,
ſub quibus æqualia ſubtenduntur latera. Si
enim angulus A, (vt ab hoc angulo incipia-
mus.) non eſt æqualis angulo D, erit vel ma-
ior eo, vel minor. Si maior, erit baſis BC, ma-
ior quoque baſi EF. Quod eſt abſurdũ. ponun
tur enim latera BC, EF, æqualia. Si verò mi-
nor eſt angulus A, angulo D, erit baſis E F,
maior baſi BC. Quod rurſum eſt abſurdum,
cum æquales ponantur. Cum ergo angulus A,
neque maior ſit, neque minor angulo D, erit vtique illi æqualis. Igitur & re-
liqui anguli B, C, angulis reliquis E, F, æquales erunt, nempe B, ipſi E, & C,
ipſi F. Si duo ergo triangula ſphærica, & c. Quod erat oſtendendum.

505.1.

382-02
12. huius.
12. huius.
7. huius.

506. THEOR. 17. PROPOS. 19.

SI duo triangula ſphærica habeant tres angu-
los tribus angulis, ſingulos ſingulis, æquales: habe-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer