Full text: Bithynius, Theodosius: Theodosii Tripolitae Sphaericorum libri tres

nempe ſinus EH, grad. 60. ſi nimirum quadratũ ſinus 5000000. ex quadrato
ſinus totius 10000000. auferatur, & reliqui numeri radix quadrata accipia-
tur, quę eſt 8660254. fere.

DEINDE, quoniam recta AF, fecans
arcum BC, bifariam, fecat quoque, ex lem-
mate definitionum, rectam BC, bifariam, at-
que adeo & ad angulos rectos; erit CL, ſinus
arcus CF, grad. 45. quem ita inueniemus. Cum in triangulo CAL, angulus L, rectus
ſit, & angulus CAL, ſemirectus, erit & angu-
lus ACL, ſemirectus, atque adeo angulo
CAL, æqualis. Igitur rectæ AL, CL, æqua-
les erunt. Cum ergo quadratum rectæ AC,
æquale ſit quadratis rectarum AL, CL, ſi-
mul; erit quadratum ſinus totius AC, du-
plum quadrati ſinus CL, grad. 45. Medietas
igitur quadrati ſinus totius erit quadratũ rectæ CL, cuius radix quadrata da-
bit ſinum CL, 7071068. fere pro arcu grad. 45. Qui etiam hoc modo re-
perietur. Quoniam quadratum rectæ BC, æquale eſt quadratis rectarum AB,
AC; atque adeo duplum quadrati ſinus totius AC, ſi quadratum ſinus to-
tius duplicetur, habebitur quadratum rectæ BC, cuius quadrati radix dabit re
ctam BC, partium 14142136. fere, & huius dimidium 7071068. dabit ſinum
CL, grad. 45.

166.1.

132-01
3. tertij.
32. primi.
6 primi.
47. primi
47. primi.

RVRSVS, quia recta AD, ſecans arcum CE, bifariam, ſecat quoque
rectam CE, bifariam in K, ex lemmate definitionum, atque adeo & ad angu-
los rectos; erit CK, ſinus arcus CD, grad. 15. quem ſic inueniemus. Quoniã
ex propoſ. 4. ſinus CK, medio loco proportionalis eſt inter medietatem ſi-
nus totius, & finum verfum CG; (qui quidem habetur, ſi EH, ſinus grad. 60. ex ſinu toto AC, detrahatur, vt in coroll. propoſ. 3. diximus) ſit vt, per co-
roll. propof. 4. notus ſiat ſinus CK, arcus CD, qui dimidium eſt arcus CE. Nam ſi medietas ſinus totius multiplicetur in ſinum verſum CG, cognitum,
producetur quadratum rectæ CK; quòd rectangulum ſub medietate ſinus to-
tius, & ſinu verſo CG, contentum, æquale ſit quadrato mediæ proportiona-
lis Ck. Si igitur quadrati rectæ CK, radix eruatur, habebitur ſinus CK, par-
tium 2588190. vt in dicto coroll. propof. 4. docuimus. Quem ſinum hoc etiam
modo inueſtigabimus. Quoniam quadratis rectarum notarum EG, GC, æqua
le eſt quadratum rectæ EC; fiet notum quadratum
rectæ EC; cuius quadrati radix quadrata dabit re-
ctam EC, notam, & huius medietas erit ſinus CK,
cognitus.

166.1.

3. tertij.
17. ſexti.
47. primi.
Arcus. # Sinus
G.
15 # 2588190
30 # 5000000
45 # 7071068
60 # 8660254
75 # 9659258
90 # 10000000

EX ſinu autem grad. 15. cognito cognofcetur
quoque, per propof. 3. ſinus DI, complementi arcus
CD, hoc eſt, ſinus arcus BD, grad. 75. qui quidem
deprehendetur partium 9659258. Itaq; inuenti ſunt
hactenus ſinus recti arcuum continentium grad. 15. 30. 45. 60. 75. & 90. vt in hac formula apparet.

HORVM autem ſinuũ beneficio ad aliorum
inueſtigationem ita progrediemur. Quoniam per

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer