Full text: Volumen secundum. Opera geometrica. Opera astronomica. Varia de optica. (2)

THEOR. DE QUADRAT. rantur duæ æquales E S, B P, & inſuper alia P D. Dico
iterum, id quo rectangulum E D B excedit E P B, æquari
rectangulo S D P. Rectangulum enim E D B æquale eſt iſtis
duobus, rectangulo E D P, & rectangulo ſub E D, P B; horum autem E D P rurſus æquale eſt duobus, rectangulo ni-
mirum S D P, & ei quod continetur ſub E S, D P, ſive
rectangulo D P B. Igitur rectangulum E D B iſtis tribus æ-
quale eſt rectangulis, S D P, D P B, & rectangulo ſub
E D, P B; horum vero duo poſtrema æquantur rectangu-
lo E P B; ergo rectangulum E D B æquale eſt duobus, re-
ctangulo nimirum S D P & E P B, unde apparet exceſ-
ſum rectanguli E D B ſupra rectangulum E P B æquari re-
ctangulo S D P.

13.1.

TAB. XXXIV.
Fig. 7.
* ,
*
Idem hoc aliter demonſtratum reperi apud Pappum, lib. 7. Prop. 24.
Vide eundem, lib. 7. Prop. 57.

14. Theorema V.

DAtâ portione hyperboles, vel ellipſis vel cir-
culi portione, dimidiâ figurâ non majore; ſi ad
diametrum conſtituatur triangulus hujuſmodi, qui
verticem habeat in centro figuræ, & baſin portio-
nis baſi æqualem & parallelam; eam verò quæ de-
inceps à vertice ad mediam baſin pertingit tantam,
ut poſſit ipſa rectangulum comprehenſum lineis, quæ
inter portionis baſin & terminos diametri figuræ in-
terjiciuntur. Erit magnitudinis, quæ ex portione & præſcripto triangulo componitur, centrum gravita-
tis punctum idem quod eſt trianguli vertex, cen-
trum nimirum figuræ.

Data ſit portio hyberboles, vel ellipſis vel circuli portio
dimidiâ figurâ non major, A B C. Diameter ejus ſit B D,
& figuræ diameter B E, in cujus medio centrum figuræ F. Et ſumatur F G quæ poſſit rectangulum B D E, ductâque
K G H æquali & parallelâ baſi A C, quæque ad G biſa-

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer