Full text: Volumen primum. Opera mechanica (1)

Quæcunque vero problemata ad alterum è duobus hiſce
reducuntur, quamlibet veræ proximam ſolutionem per nu-
meros accipiunt, logarithmorum admirabili invento. Cum
per hos hyperbolæ quadratura, ut olim invenimus, numeris
quam proxime explicetur. Eſt autem regula hujusmodi.

69.1.

De linea-
RUM CUR-
VARUM
EVOLUTIO-
NE .

Sit D A B portio hyperbolæ, cujus aſymptoti C S, C V,
ductis D E, B V parallelis aſymptoto S C.

69.1.

TAB. XV.
Fig. 1.

Accipiatur differentia logarithmorum qui conveniunt nu-
meris, eandem inter ſe rationem habentibus quam rectæ D E,
B V; ejusque differentiæ quæratur logarithmus. Cui adda-
tur logarithmus hic (qui ſemper eſt idem) 0,36221,56887. Summa erit logarithmus numeri qui ſpatium D E V B A D
deſignabit, tribus rectis & curva D A B comprehenſi, in
partibus qualium parallelogrammum D E eſt 100000,00000. Unde porro facile quoque habebitur area portionis D A B.

Sit ex. gr. proportio D E ad B V ea quæ 36 ad 5.

Ab # 1,55630,25008, logar o . 36.
auferatur # 0,69897,00043.logar us . 5.
Erit # 0,85733,24965.differ.logar orum .
Et # 9,93314, 92856.logar us .differentiæ.
Cui addatur # 0,36221,56887.logar us .ſemper addendus.
Fit # 10,29536,49743. logar us . ſpatii D E V B A D.

Habebit hujus logarithmi numerus 11 characteres, quum
characteriſtica ſit 10. Quæratur itaque primo numerus pro-
xime minor, conveniens invento logarithmo, qui numerus
eſt 19740. Deinde ex differentia logarithmi ejusdem, & pro-
xime eum in tabula ſequentis, reliqui characteres eliciantur
81026, ſcribèndi poſt priores, ut fiat 197408, 10260, addi-
to ad ſinem zero, ut efficiatur numerus characterum 11. Eſt
ergo area ſpatii D E V B A D proxime partium 197408,
10260, qualium partium parallelogrammum D C eſt 100000,
00000.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer