Full text: Volumen primum. Opera mechanica (1)

HOROLOG. OSCILLATOR. mul ſuperficiei exhibeatur circulus æqualis. cujus exemplum
in caſu uno cæteris ſimpliciore ſufficiet attuliſſe.

68.1.

Figure 1. Pag. 104.
TAB. XIII.
Fig. 1.
H E M A F K G B D
Figure 2. Fig. 2.
A F N E G B D
Figure 3. Fig. 4.
A G D C H E K F B
Figure 4. Fig. 3.
E B H X L D C A G D C
Figure 5. Fig. 5.
A D C G F E B H
De linea-
RUM CUR-
VARUM
EVOLUTIO-
NE .

Sit ſphæroides latum cujus axis S I, ſectio per axem el-
lipſis S T I K; cujus ellipſis centrum O, axis major T K. ponatur autem ellipſis hæc ejusmodi, ut latus transverſum
T K habeat ad latus rectum eam rationem, quam linea ſe-
cundum extremam & mediam rationem ſecta, ad partem ſui
majorem.

68.1.

TAB. XIV.
Fig. 2.

Sumatur B C potentia dupla ad S O, item B A potentia
dupla ad O K. & ſint hæ quatuor continue proportionales
B C, B A, B F, B E, & ponatur E P æqualis E A. In-
telligatur jam conoides hyperbolicum Q F. N, cujus axis
F P; axi adjecta, ſive {1/2} latus transverſum F B; dimidium
latus rectum æquale B C.

Hujus conoidis ſuperficies curva, unà cum ſuperficie ſphæ-
roidis S I, æquabitur circulo cujus datus erit radius M L,
qui nempe poſſit quadratum T K cum duplo quadrato S I.

69. Curvæ parabolicæ æqualem rectam lineam
invenire.

SIt parabolæ portio A B C, cujus axis B K, baſis A C
axi ad angulos rectos; & oporteat curvæ A B C rectam
æqualem invenire.

69.1.

TAB. XIV.
Fig. 3.

Accipiatur baſi dimidiæ A K æqualis recta I E, quæ pro-
ducatur ad H, ut ſit I H æqualis A G, quæ parabolam in
puncto baſis A contingens, cum axe producto convenit in G. Sit jam portio hyperbolæ D E F, vertice E, centro I de-
ſcriptæ, cujusque diameter ſit E H; baſis vero D H F or-
dinatim ad diametrum applicata. Latus rectum pro lubitu
ſumi poteſt. Quod ſi jam ſuper baſi D F intelligatur paral-
lelogrammum conſtitutum D P Q F, quod portioni D E F
æquale ſit; ejus latus P Q ita ſecabit diametrum hyperbolæ
in R, ut R I ſit æqualis curvæ parabolicæ A B, cujus du-
pla eſt A B C.

Apparet igitur hinc quomodo à quadratura hyperbolæ
pendeat curvæ parabolicæ menſura, & illa ab hac viciſſim.

Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.

powered by Goobi viewer