86.
Series ſexta.
_a_ - {_cc_/_a_} = _x_.
_aa_ - _cc_ = _nn_.
_a_
3
- _cca_ = _n_
3
.
_a_
4
- _ccaa_ = _n_
4
.
Fiat angulus RAI ſemirectus, & AD ad AI perpendicularis;
in qua AC = _c_; tum utcunque ductâ GZ ad AD parallelâ, ſit
AG (vel GZ). AC: : AC. ZK, & per K, intra angulum DAR
deſcribatur _hyperbola_ KYK; tum ſint curvæ CLYHLλ, AMYHMμ,
ANYHN ν
[?]
tales, ut inter AG (vel GZ) & GK ſit _media_ GL,
_bimedia_ GM, _trimedia_ GN; hæ propofito deſervient.
Conſtat hoc, ut in præcedente; & quo pacto radices reſpectivè
determinantur. Verùm adnotetur prætereà.
87.
Not.
1. Curvæ CLH, AMH, ANH ad quintam ſeriem pertinent; re-
liquæ HL λ, HM μ, HN ν ad ſextam.
2. Quoad curvas ad quintam ſeriem pertinentes; ſi A φ = √{ACq/2}; & ordinetur φ Y; erit Y communis linearum interſectio, ſeu _no_-
_dus._
3. In harum primo gradu ordinata AK eſt inſinita in ſecundo AC
eſt maxima; in tertio ſi fuerit AP = √{ACq/3}, & ordinetur PV,
erit PV maxima(unde radicum una ſemper major eſt quam √{ACq/3}
altera minor) in quarto ſi AQ = √{ACq/4} = {AC/2}, & ordinetur QX,
erit QX maxima (unde radicum una major erit, altera minor ipsâ
{AC/2}).